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ABSTRACT 

We prove that ~ can be split into t~vo homeomorphic parts each of which has 
no autohomeomorphism except the identity. Moreover, this holds for many 
separable normed vector spaces over the rationals. 

MAIN THEOREM. We say that a topological space in X can be rigidly halved 
i f  X can be partitioned to two homeomorphic rigid sets. 

Let Xbe a separable normed vector space of power 2~0 over the field Q of all 
rationals. X can be rigidly halved if it satisfies one of the following conditions: 

(1) Xhas a complete direction, i.e., there is a z E X, z # 0, such that ~z __. X, 
where ~ is the set of all real numbers and for every z ~ X and r E ~, rz is 
defined in the completion X c of X. 

(2) X is meager. 
(3) X has an autohomeomorphism of order 2 without fixed points. 

COROLLARY. Let X be a separable normed vector space o f  power 2 so over Q. 

x can be rigidly halved i f  it satisfies one o f  the following conditions: 
(4) X is complete. 

(5) X has a nonvoid bounded clopen set. 

(6) X has a nontrivial autohomeomorphism which is the identity outside 
some bounded set. 

HISTORY. In the 1982 North-Holland Calendar, van Mill asked whether 
can be rigidly halved.. Van Mill and Wattel have proved in [3] that the circle 
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and some related spaces can be rigidly halved. Van Engelen [2] and the author 
[1] solved, independently, van Mill's question. The present Main Theorem 
extends this result to many separable normed vector spaces over Q. 

We shall now proceed to prove the Main Theorem and then we shall show 
how the Corollary follows from it. 

NOTA'rION. We denote by Z the set of all integers. For a metric space 
(X, d)  and A, B c_ Xwe define d(A, B) -- inf{d(x, y) : x EA, y EB}. 

THEOREM 1. (A) Let X be a Hausdorff space which satisfies the second 
countability axiom, and let f ,  Dl, D2, El, E2 be as in the following (1)-(7). 

(1) E, c_ Dl, E2 C_ D2, and Di, D2 are disjoint subsets of  X. 
(2) f is an homeomorphism of  X - E2 onto X - El. 
(3) f maps DI onto D2 and D2 - E2 onto D~ - El. (Notice that by (1) and (2) 

Di, D2 - E2 ___ Dom f, D2, Dl -- El C_ Range f.) 
(4) For every x ~ X  and n E Z ,  iff2n+l(x) is defined then x ÷ f2"+l(x). 

(5) For every nonvoid open set U in X, 

[ U - (Di U D2)[ =- 2 K°. 

(6) Every non void open set U in X has a non void open subset V such that for 
each n EZ,  d(fn(V), U,,~z,~,,n fro(V)) > 0. 

(7) For every n ~ Z ,  n > 0 ,  and for every nonvoid open set U, there are 
x~E U f3 D! N D o m f  2", i < to, such that the sequence (x~ : i < to) con- 
verges to some point xo, ~D~ but (f2~(x,) : i < to ) does not con verge to 
any point in X - D2. 

Then X can be rigidly halved. 
(B) The conclusion of(A) holds also i f  we replace requirements (5) and (6) by: 

(6) B X - ( D I U D 2 )  is nowhere meager, even i f  we delete from it 
< 2 a0 points. 

(C) The conclusion of(A) holds also i f  we replace requirements (6) and (7) by: 
(6) c For every xqt-Dl U D2, f2(x)=x .  

PROOF OF THEOREM 1 - -  FIRST STAGE. In the first two parts of the proof 
we assume only (1)-(4) and we set up a procedure for splitting X into subsets A 
and B such that A ~_ D~ ~_ El, B ~_ D2 _ E2, the given function f i s  the required 
homeomorphism of  `4 onto B and f also maps B - E2 onto .4 - El. The 
procedure which we shall set up is sufficiently flexible to allow carrying out 
steps which will ensure the fulfillment of additional requirements. We shall 
also assume that, as a result o f  these additional steps, .4 is dense in X. 
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By (1)-(3) we can partition X into sets of the following four types: 

Type (i). {x, f(x), f2(x) . . . .  }, where xEEl; 
Type (ii). { . . . ,  f -2(x),  f - l (x ) ,  x}, where x ~E2; 
Type (iii). {x, f(x), f 2 ( x ) , . . . ,  fro(x)}, where x EEl, fm(x)~E2; 
Type (iv). ( . . . ,  f -2(x),  f - l (x) ,  x, f(x), f2(x), . . .  }, where this set is dis- 

joint from El U E2. 
Any of the sequences (iv) may contain repetitions, but by (4) its members in 
the even places are different from those in the odd places. 

By (1)-(3) we have, for n < to, for the sets of type (i) and (iii)f~"(x)E Dl, 
f2,  + ~(x) ED2; for sets of type (i i)f  -(2, + i)(x)EDl,f -2,(x)ED2 ' and for sets of 
type (iv) either the set is included in D~ U D2, with the members alternating 
between Dt and D2, or else the set is disjoint from Dl U Dv 

We shall now construct two ascending sequences (Aa : a < 2  K0) and 
(Ba" a < 2~0) of subsets of X such that for all a < 2s0: 

(a) Ao ffi Dl, Bo = D2. 
(b) Aa U B. - Ao U Bo is a union of sets of type (iv). 
(c) If a is a limit ordinal then A. = t.J# <~ Ap, B~ = Up <a Bp. 
(d) A. n B. = 
(e) f m a p s  A. onto B. and Bo - E~ onto A~ - El. 

(f) IA,-D~I, [B~-D2I < lal +R0. 
(g) Oo<2  (Ao u BJ  = X. 

We take A -- U.<2~oAa, B -- U.<2,~ B~, then A __ Ao = Dl, B __ Bo -~ D2, A and 
B are disjoint by (d), A U B = Xby (g) and, by (e),fmaps A onto B and B - E2 
on A - El. 

We shall define A~ and B~ by recursion..4o and Bo are given by (a); for a limit 
ordinal a, Aa and B~ are given by (c). Given A, and B, we construct A~+ ~ and 
B~+l as follows. We take for A,+l U B~+l --A~ U B, the union of any number 
< R0 of sets of type (iv), putting for each such sequence the members in the 
even places in one of the sets A~+ l, Ba+l and the members in the odd places in 
the other one. It follows now easily, by induction on a, that requirements (b), 
(d)-(f) are satisfied. We shall refer to the step of going from A,, Ba to A,+ 1, Ba+ i 
as the recursion step. We have considerable freedom in what we can do in the 
2 a0 recursion steps, and what we shall do in them will determine the properties 
of the sets A and B. 

By the second countability axiom IXI < 2 0; let X -- {xp :~ < 2~0}. Let us 
denote with Pp the task of making sure that xp is in A~+l U B~+l. Pp is carried 
out in a recursion step as follows. If xp ~A~ U Ba then nothing is done. If 
xp ~Aa U Bo then, by (a) and (3), xp is in some set of type (iv); in passing to 
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A,+I, B,+~ we add this set to A, U B,. In the 2~0 recursion steps we carry out, 

among other tasks, the tasks Pp, ,0 < 2~o, and hence also requirement (g) holds. 

Before going on to the next step we need the following lemma, which will 

enable us to carry out in the recursion steps a diagonalization over all 

autohomeomorphisms of A. 

L~MMA 2. Let X be a Hausdorff space which satisfies the second countabi- 
lity axiom. Then there is a sequence (& : a < 2~o) of  one-one functions from 
subsets of  X into X such that for e very autohomeomorphism g of a dense subset A 
of  X there is an et < 2 ~o such that g c_ g,. 

PROOF OF "rue L~M~A. Let ( U~ : n < o~) be a basis for the topology of  X. 

Let g be an autohomeomorphism of  a set A dense in X. We define now a double 

sequence ( V., W. : n < o~) as follows. For each n < oJ we set V2. = W~. + I = 

U.. For each n < m we take for W2. some open set of  X such that g maps 

A n U~ into W2. and A - U~ into X -  W2. (there is such a set, since g is a 

homeomorphism and the topology on A is induced by that of  X). Similarly we 

take 112. + ~ to be an open set such that g -  i maps A N U. into V~. + ~ and A - U. 

into X - V2. + i. Thus for all n < ~o the one-one function g maps A n V. onto 

A n W.. Therefore, for all m, n < co 

(A n v.) n (A n F . ) - -O  iff(A n w.) n (A n w . ) =  

Since A is dense in X, (AA11 . )A(A n Vm)=J~ iff V~N V m = ~ ,  and 

( A n  IV.) n ( A n  Win) = ~ iff IV. N Wm= ~ .  AS a consequence I1". O Vm = 
J~ iff W. n Wm = Z .  

We say that a double sequence ( V., IV. : n < o~ ) of  open sets of  Xis special if 

each one of  the U.'s occurs among the V.'s and among the W.'s and if for all 

m, n < o~, V. n Vm = J~ iff IV. n W,. = J~. For any special double sequence 

( V., W. : < m ) we define a relation G on X as follows: 

xGy iff, for every n < w, x E E IV,. 

We shall now prove that G is a one-one function by showing that for all 

xl, x2, Yl, y2EX, if  xtGyt and x2Gy2 then x~ -- x2 iff yt = y~. Assume x~Gy~, 
x2Gy2. If  x~ ÷ x2 then, since X is Hausdorff and the sequence of  the V.'s 

contains all U.'s, there are n, m such that x~ ~ V., x2 ~ VI and V. N Vm = Zi. 

By the definition of  G we have y~ E IV., Y2 E Win. Since V~ n Vm = J~ and the 
double sequence is special we have IV. n wm -- ~ ,  therefore YR ~ Y2. Simi- 

larly, ify~ ÷ Y2 then x~ ÷ x2. Thus G is a one-one function on a subset of  X; we 

shall now see that for the particular special double sequence defined above 
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G _ g. Since g is on A it suffices to prove G(x) = g(x) for each x CA. We saw 
that, for all n, g maps A f3 V, onto A N I4", hence, since gis  a permutat ion of  A, 
x E 1f". ,~,g(x)~ IV. and therefore xGg(x), i.e., G(x)= g(x). By the second 
countability axiom the number  of  the open sets of  X is at most 2~0, hence the 
number  of  the special double sequences in X is at most 2~0, and the number  of  
the functions G obtained from them as above is at most 2~0. We saw that every 
g as in the statement of  the lemma is included in one of those G's. 

PROOF OF THEOREM 1 - -  SECOND STAGE. Our present aim is to prevent A 
from having nontrivial autohomeomorphisms,  or at least to have as few as 
possible such homeomorphisms.  We define now a task Qa, for fl < 2~0, which 
tries to prevent the function gp of  Lemma 2 from being an autohomeomor-  
phism of  A. Qp is carried out (at step ~) as follows. If  we have 

(,) there is an x ~ X  - B, - Dom(gp) 

then let )Co be some such x. I fxoEA.  we do nothing, i f x o g A .  O B. we add to 

A. U B. the set of  type (iv) which contains)co, putting Xo in A.+t. In either case 

xo6A.+t - Dom(g#) C_ A - Dom(g#), 

hence gp (or, rather, ga r A) is not an autohomeomorphism ofA.  I f ( , )  does not 
hold, then if 

(**) t h e r e i s a n x ~ X - B ,  suchthatgp(x)qtA. O{ f2" (x ) :nEZ}  

then let Xo be some such x. I fxoEA.  and gp(Xo)~B, we do nothing. Ifx0EA~ 
and gp(x)q~A. U B~ then we add to A. U B. the set of  type (iv) which contains 
gp(Xo) putting gp(Xo) in B~+I. If)co g A. t2 B, and gp(x0)E B~ we add to A. U B~ 
the set of type (iv) which contains Xo, putting x0 in A,+l. If  xogA.  U B. and 
ga(xo)qt:A~ U B,, t_J {f2"(xo) : n EZ}  then we add toA,  U B. the sets of  type (iv) 
which contain x0 and gp(Xo) putting Xo in A,+ t and ga (xo) in B~+ i. I f  the same set 
of  type (iv) contains both xo and gp(Xo) then, since gp(Xo)q~ {f2"(Xo) : n EZ},  
gp(Xo)~-fZn+l(Xo) for some n E Z  and when we put Xo in A~+I, gp(Xo) is 
automatically put in B,+ t- Thus in all cases of (**) we get xo ~A~+t __C A and 

gp(Xo) ~ Bo +1 - B, hence gp(Xo) g A  and gp is not an au tohomeomorphism ofA.  
We had to assume in (**) that ga(xo) -~ f2"(Xo), since ifgp(x0) = f2"(Xo) then, if 

xo~A.+ ~, also, by (e), gp(x0) = f2"(Xo)EA.+ l and we cannot put gp (x0) in B~+ t 
as we did in all the cases of  (**). I f  neither (,) nor  (**) holds we do nothing. 

Assume now that we have constructed the sequence (A., B~ : a < 2~o) and 
have carried out, at the recursion steps, various tasks, which include all the 
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tasks Pp and Qp, p < 2 s0. Let g be an autohomeomorphism ofA. By Lemma 2 
there are p,  2 < 2 z0 such that g _C gp and g -  ~ C__ g~. Suppose task Qp was carried 

out when we constructed A.+ t, B.+ ~ from A~, B~. If either (.) or (**) held then, 
as we saw above, gp would not include an autohomeomorphism g of A, hence 
both (.) and (**) fail and we have, for every x E X - B o ,  xEDom(gp)  and 
gp(x)EA~ U {f~n(x) : n EZ}. Since A = X - B c_ X - B, and g c gp we have, 

for every x E A ,  g(x)EA,  U { f2n(x) :nEZ} .  Suppose that the task Qa was 
carried out when we constructed A6+1, Br+~ from A~, B6 then we have, 
similarly, that for every x E A ,  g -~ (x )EAr tJ{ f2" (x ) :nEZ} .  Let ~,= 
max(a, J), then A~, A6 _ Ar and we have 

( # )  for a l lxEA g(x) ,g-l(x)EAy U {fZn(x)" nEZ} .  

If x EA r then by (e) {f2"(x) : n E Z }  c At, hence the right-hand side of ( # )  

equals A r and by (# )  g -  ~(x) EA r. I fx  EA - Ay and g(x) EA r then, by what we 
have just seen, x -- g-~(g(x))EAr, contradicting x EA - A r. Therefore, by 
(#) ,  for x E A - A  r g(x)E{f~"(x):  n EZ} ,  i.e., g(x)--f2"tX)(x). Thus we 
have established that if we carry out the appropriate tasks then: 

(h) for every autohomeomorphism g of A there is a ~, < 2~0 and a function n 
on A - A r into Z such that for every x EA - Ar, g(x) = f2"tX>(x). 

PROOF Ol~ THEOREM 1 - -  PARr A. By (h) we have a good hold on g on 
A - A  r. Therefore we want to get: 

(i) for every ~, < 2 ~*, A - A  r is dense in X. 
This will also verify the assumption, which we have already used above, that A 
is dense in X. To obtain (i) we carry out, at the recursion steps, also the 2 ~* 
following tasks Rp.,, fl < 2~,, n < oJ. Rp., adds to A, t3 B, a set of type (iv) 
which contains x, putting x in A,+~, where x is some point in U, - A ,  t2 B,, 
and U, is the n-th basic open set. There is such an x by (5) and (f). 

Let gbe a nontrivial autohomeomorphism ofA. Then {x EA : g(x) ÷ x}  is a 
nonvoid open set in A. Let U be an open set such that U O A  
{x EA : g(x) ÷ x}; clearly U ÷ ~ .  Let Vbe an open subset of Uas in (6). Since 

A - A  r is dense in X there is an XoE(A - A  r) n V, then xoEA O U, hence 
g(Xo) ~ Xo. By (h), g(Xo) = f~'tx*)(x0); let us denote n(Xo) with n. n # 0 since 
g(Xo) ~ Xo. By (6) d(f2n(V), Um~z, m ,' 2n fro(V)) > 0, therefore there is an open 
set W* ___ f2~(V) such that f ' ( V )  O 1,1I* ffi ~ for m ÷ 2n. We have XoE V, 

g(Xo)--f~'(Xo)Ef2"(V) c IV*. Since g(Xo)÷ xo there are disjoint open sets 
Wo, W~ such that xo E Wo and g(xo) E W~. Without loss of generality W~ C__ W* 
and W0 _C V. Since g is continuous there is an open set W2 such that 
xoEW2CWo and g(W2AA)C_W~AA.  For every x E W 2 A ( A - A r ) ,  
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g(x ) f f .Wl  C W* and g(x)-- f2n(x)(x) ,  hence, by our choice of IV*, 

n(x)  = n. Thus g(x)  = f2" (x )  for every x ~ W2 n (A - At). The functions 
ja, t(Wx O D o m f  2" O A) and g t(W2 n D o m f  2n n A) are continuous func- 
tions on W2 n Dom f2~ n A which coincide on the set I4-'2 n (A - At) which is, 
by (i), dense in W~ n Dom f2" f~ A. Therefore 

g t (W 2 n D o m f  2" NA) = f 2 ,  r(W2 n D o m f  2n nA).  

By (7) for W2 and n there are x~ E W2 n D t n  Dom f2, ,  i < 09, such that the 
sequence (x~: i < 03) converges to some point x,o ~D~ but (f2n(Xi) : i < 03) 
does not converge to any point in X - / )2 .  Since 

x, ~ W2 n D~ n Dom f2.  C_ W2 n A n Dom f2. ,  

we have, by what we have just now shown, g(x~) = f2"(x~) for i < 03, hence 

(g(xi) : i < 03) = (f2"(xi)  : i < 09). 

Since xo, E D I __. A and g is continuous 

lim f2"(x~) = lim g(x~) = g(x,o). 

g(x ,o)EA C_ X - 1)2, contradicting what we said about (f2n(x~) : i < w ). 

PROOF OF THEOREM 1 - -  PART B. Let (Up, Cp : p < 2~0) enumerate all 
pairs ( U, C) where U is a nonvoid open set and C is a countable union of 
closed nowhere dense subsets of X, each pair appearing 2~o times. In the 
construction of (Aa, Ba :a  < 2Ko) we replace the tasks Rp., by the tasks Rp, 
p < 2"0, where the task Rp is to take an x E Up - (d, O B~) - Cp and put in 
A,+~ t9 B,+~ the set of type (iv) which contains x, putting x in A~+m. Up - 
(A, t9 B~)-Cp ~ JZ since, by (6) s and (f), U p -  (A, O B~) is not meager. 
Having carried out the tasks Rp, p < 2"0, we get that for every ~, < 2"0 and every 
nonvoid open set U, U n (.4 -- At) has a point outside each meager set. Thus 

(j) for every y < 2"0 and every nonvoid open set U, U n ( A n  A r) is not 
meager. 
In particular we know that A is dense in X. 

Let g be an autohomeomorphism of A which is not the identity. Since 
{x  E A : g ( x ) =  x} is a closed subset of A there is a nonvoid open set W such 
that W N A _ (x CA : g(x)  ~ x}. Let ? < 2"° and the function n be as in (h), 
then f o r x E  W n (A - A~), n (x )  ,/, 0 and 
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W n ( A - A p =  U { x E I V n ( A - A y ) : n ( x ) = n } .  
nEZ, n ¢,0 

Since W n ( .4 -A~)  is not meager, one of  the sets { x 5  W n ( . 4 - A y ) :  

n(x) = n } is not nowhere dense; hence there is a nonvoid open set U such that 

for a dense subset V of  U, f2 ,  r V = g ~ V. As in the proof of  Part A we 

conclude that 

g r (U n D o m f  2n n A) _f2n  r (U n D o m f  2n n A). 

Using (7) as in the proof of  Part A we get a contradiction. 

PROOF OF THEOREM 1 - -  PART C. This is left to the reader. 

PROOF OF THE M A I N  THEOREM - -  FIRST STAGE 

Proof o f  (3). Let U be an open nonvoid subset of  X. Since X is separable, 

X is the union of  R0 translations of U. Therefore, since I X I = 2 K0 also I U I 

must be 2 ~0. 

Let f b e  an autohomeomorphism of  X of order 2 without fixed points. Take 

D l ~- D 2 - -  ~ .  B y  the remark which we have just made, all the requirements of  

Theorem l(C) are fulfilled and X can be partitioned to two homeomorphic 

rigid sets. 

Proof o f  (I). We shall now prove the the.orem under the assumption that 
(1) holds but X is not meager, since the case where X is meager is dealt with by 

(2). We shall prove later (Lemma 4) that the hypothesis of  Theorem I(B) holds 

for the case where Xis the real line ~ together with the additional demand that 

Dz U/)2 is meager. Building on this we shall prove case (1) of  the Main 
Theorem, and first we shall prove the following lemma. 

LEMMA 3. Let X be a nonmeager normed vector space over Q o f  cardina- 
lity 2 ~o. 

(a) X is not the union o f  a meager set and a set o f  cardinality < 2 ~o. 

(b) No non void open set U in X is the union o f  a meager set and a set o/ 

cardinality < 2~o. 

PROOF OF LEMMA 3. (a) Let M be a meager set and W c_ X, I WI < 2 ~0. 

Let W- = {y - y '  : y,  y ' ~  W}; clearly I W- I < 2 ~°. Since I XI = 2 ~0 there is a 
z ~ X  - W-.  By our choice of  z, W + z = {y + z : y E W} is disjoint from W, 

hence IV + z _ X - W. If M U IV -- X then IV + z _ X - IV C_ M, hence 
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W + z is meager and also its translation Wis meager. Since X = M U Walso X 

is meager contradicting our hypothesis. 

(b) Without loss of generality 0 ~ U .  Assume that U =  U ~ , M n  U W, 
where each Mn is nowhere dense, and I WI<2~o .  Then X =  

U k,nEto kMn U Uk~.t o k W  where, for Y c X ,  k Y  = {Icy [ y ~ Y}.  Since each M~ 
is nowhere dense Uk.,eo, kM~ is meager. We have I k W I  < 2 ~0 and since a set of 

cardinality 2~, is not the union of R0 sets of  smaller cardinality, I Ukeo, k W I  < 

2~0. Thus X is the union of a meager set and a set of cardinality < 2~0, 

contradicting (a). 

PROOF OF THE MAIN THEOREM - -  FIRST STAGE (continued). Let f*, D*, 
D*, E*, E2* be the respective function and sets which satisfy the hypothesis of  
Theorem l(B) for the real line ~ siach that D* U D~' is meager in ~. Let Xb e  a 

separable normed vector space over Q and let ~z,  z ÷ 0, be a complete 
direction in X. By the Hahn-Banach theorem there is a bounded linear 
functional P on Xsuch  that P(z  ) = 1. Let D~ = P -  I D*, E~ = P -  I E* for i = l, 2 

and let, for x E X - E2, 

f ( x )  = x + ( f * ( P ( x ) )  - P(x) )z .  

Aided by the observations that for all x E X  - E2, P ( f ( x ) )  = f * ( P ( x ) ) ,  and that 
for x ft. X - E,, f - ~ ( x )  = x + ( f * - ' ( P x )  - Px)z ,  we can easily show that Di, 
D2, El, E2 and fsat isfy conditions (1)-(4) of  Theorem 1. 

We shall now prove that (6) 8 holds too. Let S be nowhere dense in ~t then we 
shall see that P -  I(S) is nowhere dense in X. Let U be a nonvoid open set in X 
and let x ~ U, then for some r > 0, {x + tz : I t I < r} _ U, hence the open 
interval (P(x)  - r, P (x )  + r) is a subset of  P(U).  Since S is nowhere dense 
(P(x)  - r, P ( x )  + r) has a nonvoid open subset V such that V n S = O .  We 
have P - I ( V ) N  P - ' ( S ) =  0 .  Since P is continuous, P - ' ( V )  is open. Let 
P ( x )  + t* ft. V, I t* I < r, then x + t*z E P -  '(1I) N U and thus P -  i(ii) n U is a 

nonvoid subset of U disjoint from P- l (S) .  As a consequence of  what we have 
just proved, since D* U D~' is meager in ~t, Di O D E = P -  I(D* U D~') is meager 
in X. For every nonvoid open set U in X, I U - (D~ U D2)I = 2 s° by Lemma 
3 (b), thus also condition (6) 8 holds. 

We shall now see that condition (7) of Theorem 1 holds too. Let U be a 
nonvoid open set in X and let x E U. Then there is an r > 0 such that 

{x + tz :1 t I < r} _ U. Since (7) holds for the open interval (P(x) - r, P(x)  + r) 

in ~, it lifts easily, by p - l ,  to hold for the open set U in X. 
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Since X satisfies requirements (1)-(4), (6) B and (7) then, by Theorem 1 (B), X 
can be partitioned into two rigid homeomorphic sets. 

Now we shall make the preparations needed in order to continue proving the 
Main Theorem. 

NOTATION. Let X = ( X ,  d) be a metric space and let ~+ be the set 
of all positive reals. For x E X ,  r ~  + let the open ball B(x,r)  be 

{z E X: d(x, z) < r }. For a bounded set Vin X, diam(tO denotes the diameter 
of V. For any set U, Bd(U) is the boundary of U. 

LEMMA 4. Assume that : 
( 1 ) X -- (X, d) is a complete separable metric space without isolated points. 
(2) F is an autohomeomorphism of X such that 

(a) for every x E X and n > O, F 2" + i(x) v ~ x, and 
(b) every nonvoid open set U has a nonvoid open subset V such that for 

each n EZ, d(F"(V), U,.~z,,.,,, F ' ( V ) ) >  0. 
(3) Every nonvoid open set U has two nonvoid disjoint open subsets V and W 

and a homeomorphism g from V onto W such that for every closed set C, if 
C c_ V then also g(C) is closed, and i fC c_ W then also g-  ~(C) is closed. 
Then there are f ,  Ot, D2, E~, E2 which satisfy the hypotheses of  Theorem I(B) 
and such that Dt U 192 is meager. 

We shall first give a definition and prove a lemma (lemma 6) and then we 
shall prove Lemma 4. 

DEFINITION 5. An approximation T consists of: 
(a) Four sets D r, D r, Er, E r  such that Er___ D r, ErC__ Dr, E r  and E r  are 

closed, and D r and D r are nowhere dense disjoint sets. 
0~) A homeomorphism fr  from X - E r  onto X - Er. 

fr ,  D r, Er, Dr, E f  are such that the following (7)-(e) hold: 
(7) fr  maps Dr onto Dr and D r - E r onto D r - Er, hence Dr U Dr is closed 

under f r  and f £  i. 
(6) Every nonvoid open set U has a nonvoid open subset V c_ 

X - (Dr U D ~  such that the setsf~ (V), n E Z, are open, for every n ~ Z, 
d(f~(V), U,,~z.m,, ,f~'(V))>0, and for all m, n E Z  and for every 
closed set C c_ f~(V) ,  f~.(C) is dosed too. 

(e) For every x E X and n ->_ 0, iff~-" + m is defined then f~-" + ~ (x) ÷ x. 
Such a T is called an approximation because Dr, D r, Err, Er, fr are an 
approximation to D~,/92, Era, E2, f i n  the conclusion of Lemma 4. 
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LEMMA 6. For every approximation S, e > O, k > 0 and non void open set 

U there is an approximation T such that: 

( 1 ) There is a sequence ( zt : i < 09 ) o f  points o fD  r f~ U which con verges to a 
point o f  Dr  N U and for every m ~ 0 the sequence (f2m(z~) : i <CO) is 

defined but does not con verge. 
(2) E s C_ E r ,  D s C DT and (E~ - E s) N D s = J~ for 1 - -1 ,2 ;  hence 

Dora f r  C_ Dora fs, Dom f~- 1 _ Dom fs-  1. 
(3) f r  agrees with fs  on D s U D s. 

(4) For every x ~ Dom fr ,  d(fr(x),  fs(x)) < e .  min( l ,  d(fs(x), E~). 
(5) For every x E Dom f ¢  i, 

d ( f r  ' (x), fs-  I (X)) ~ ~" ra in ( l ,  d ( f r  1 (X), f s - '  (X))) 

< e.  min(1, d ( f ~ l ( x ) ,  E2S)). 

(6) For every 1 <= i <-_ k and x ~ D o m  f~-, d(f~-(x), x)  > (1 - e)d(f~(x),  x). 
(7) D r n U ÷ 

PROOF OF LEMMA 6. Let S, e, k, U be given. By Definition 5(J), U has a 
nonvoid open subset V__ X -  (DlS U D ~  such that the sets Vm =f~' (V) ,  
m E Z ,  are open, and for every m E Z ,  d(Vm, U~ez, i,,= v~) > 0, and for every 
closed set C c_ Vm also fs(C) is closed. We shall now shrink V so that also the 
following conditions (i)-(v) will be satisfied: 

(i) d(V,  E2S)>O. 

(ii) d(V~, EO > 0. 
(iii) For i -- - 1, 1, diam(V~) _-< e .min( l ,  d(V~, E2S)). 
(iv) For i -- 0, 2, diam(V,.) < e .min(1, d(V~, E~).  

(v) diam(I0,  diam(V0 < e .min_k.<j.,o d(Vj, U,,,ez,,,,,,j Vm). 
Let US notice that if we replace Vby a nonvoid open subset V' of  V, what we 

have assumed above about V holds also for V' and those requirements among 
(i)--(v) which are satisfied by V are also satisfied by V'; therefore we can deal 
with each one of  (i)-(v) separately. First let us check one point, fs is a 
homeomorphism o f X  - E s onto X - E s, by Definition 5(3,) D s U D s is closed 

under fs, and V c_ X - (D s U D2S); hence, for m EZ ,  f~ '  is a homeomorphism 

of  V onto f~'(V). Since V' is open f~ '(V')  is open in the relative topology of  
f~'(V), and since f~ '(V) is open so is alsof~(V' ) .  

Now let us deal with (i)-(ii). In each one of  those cases we have to shrink Vso 
that two sets which we know already to be disjoint will have positive distance 
between them. For (i) this is immediate  and for (ii) this follows from the 
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continui ty o f f s .  N o w  we shrink V further to meet  requirements  (iii)-(v): also 

this is possible since each one of  the functions fs,  f ~ ,  f~-t  is continuous.  

By L e m m a  4(3) Vhas nonvoid  disjoint  open subsets M ,  N a n d  a homeomor-  

phism g f rom M onto N such that for every closed set C,  i f  C _ M then also 

g(C) is closed, and if  C _ N then also g -  t(C) is closed. Choose g E M  and let 

c = d(g ,  X - M),  ~ - g(g).  Since X has no isolated points there is a sequence 

c > r_ ~ > r0 > r~ > • • • o f  posit ive reals and a sequence z_ 1, z0, z~ , . . ,  o f  points 

o f  X such that limi_® r~ - - 0  and d(z~, yc)= r~, for i < 60. For  i, 1 < co let 

s,--½(r,_t+r,), g,=-B(g,s~), N,--g(g,), gt.,=fts(g~), Nl. ,=fts(N~),  

P~=Bd(Mi), Qi=g(P~), Pt.i=fts(Pi), Qt.,--fts(Q~). We now define T as 

follows: 

er=e u u e,u u 
i < t a  i < t o  

U U P2,i U U Q2.i U {fs2(g), f~(.P)}, 
i < t ~  i < ¢ o  

E r - -  E s U U P,,, U U Q,,, u {fs(.~), fsO~)} 
/ < t o  i < ¢ o  

U U P_,., U U Q_,,, U {f~- ' (g) , f~- 'O~)}.  
i <oJ i <ta 

For x ~ E r we  set 

fr(x)  = 

f~(g(f~"(x))) i f x ~  U 
i < ~  

f](g-I(f~'l(X))) i f x E  U 
i < w  

g(fs(x)) i f x E  U 
i <~ ,  

g-I(fs(X)) i f x E  U 
i < ~  

fs(x) otherwise; 

(gl,2i - Mi,2i + i - Pl,2i + !), 

(NI.2i -- Ni.2~ + t -- Qt.2~ + i), 

( g -  1,2i - M-I,2/+1 - P -  1.2i+1), 

(N_ 1,2i - -  N _  i ,2 i  + 1 - -  Q -  1,2t + l), 

D r=Dslu U (U  Px,,,u U 
I • Z  i<¢a i<¢a 

Q2t,i u {fs2'(~¢), f~(.P)} 

U {f~r(z,):i < c o }  U {fs2/+l(Z_l)}), 
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\ 
U {f~t+'(zi)" i < o9} U {f]t(z_l}). 

Let us prove now that T is an approximation, i.e., it satisfies requirements 
(a)--(e) of Definition 5. 

(a, fl) First we prove that E r and E r are closed nowhere dense sets. For 
i < o9, P; is the boundary ofB(~t, s~), hence it is a closed nowhere dense set. It 
is also easily seen that U~<o, P i u { ~ }  is closed. For each i < o g ,  
d(P, Uj<o,,j,,i Pj) is So - s~ > 0 for i -- 0 and 

min(s~_ t - s~, s~ - si + l) > 0 for i > 0. 

As a consequence U~<o, Pi is nowhere dense. 
For a subset P of an open set W, P is obviously nowhere dense if it is 

nowhere dense in the relative topology of W, and we shall use this fact tacitly 
from now on. fs is a homeomorphism of V on V~ and V, V~ are open, hence 
since Ui <o, Pi is nowhere dense, also Ui <o, P u  = fs(Ui <,o Pi) is nowhere dense. 
For the same reason also U~<~,Pj.i, j = -  1,2, Uj<o, Qi, and U~<~,Qj.i, 
i , j  = - 1, 1, 2, are nowhere dense. E s and E s are nowhere dense, since S is an 
approximation, therefore E r and E r are nowhere dense, being finite unions of 
nowhere dense sets. By Definition 5(J),fs a n d f s  ~ map closed subsets of Vonto 
closed sets hence 

fs(,.<o,U P~ u {.~})ffi ,-<,~U Pu  u {fs(~)} 

is closed. Similarly also U,<,,,Pj.~ u {f~(x)}, j = - 1, 2, are closed. By our 
choice of  g, g maps closed subsets of  M onto closed subsets of  N hence 

g(i<~,U P j u { ~ } ) =  i<~,U Q ~ u { , }  

is closed, and as we saw just now, also 

j = - l ,  1,2, 

are closed. E s and E s are closed by Definition 5(a), hence also E• and E r are 
closed. 
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Our  next aim is to prove that f r  is a homeomorph i sm o f  X -  E r onto 

X -  Etr. Looking at the definition o f  f r  we see that  D o m  f r  decomposes  

disjointly to the sets 

(*) 

" g l , 2 i  - g l , 2 i + l  - -  P I , 2 i+ I ,  N I , 2 i  - NI,2~+i  - -  QI ,2 i+ I ,  

M - I , 2 i  - -  g - l , 2 i + l  - P - I , 2 i + I ,  N - l , 2 i  - N - I , 2 i + I  - -  Q - I , 2 i + I  

and 

Y = the complement  in X - E r o f  the union o f  these sets. 

for  i < m 

f r ,  as defined, is a homeomorph i sm on each of  these sets, being equal either to 

f s  or  else to a composi t ion of  homeomorph i sms  f rom among fs ,  f s -  ~, g, g -  t. 

The images o f  the sets ( ,)  under  f r  are, respectively, the pairwise disjoint  sets 

(**) 

"N2,2i - N2,2i+ 1 - Q2,2i+ i, M2,2i  - M2,2i+  1 - P2,2i+ 1, 

N2,- N2,+~- Q~,+~, M2,- M2,+~- P2,+~ 

and 

Z = the complement  in X - E~ r o f  the union o f  these sets. 

This  is easily seen since fs  is a bi ject ion of  X -  E2 s onto X -  E s, and 

fs(E~" - E2 s) = Et T - E s. Therefore,  in order  to establish that  f r  is a homeomor -  

phism it suffices to show that each one o f  the sets o f  ( ,)  and (**) is clopen in 

X - E~ and X - E~, respectively. The set M2~ - M2; + t - P2~ + ~ is open. The set 

e 2 i  [,3 P2i --  m2i + l is closed. By our  choice o f  g ,  N2i - N2t + t - Q2i + l is open  
and N2~ O Q2~ - N2i + l is closed. By Definit ion 5(fl) and (t~) and our  choice of  

U, also all the sets Mj.2~ - Mj.2/+ t - Pj,2~ + ~ are open and the sets Mj.2~ O Pj,2~ - 

Mj.2~ +i are closed. Clearly 

mj.2i - mj,2i +1 - Pj.2i +1 

= (mj,2, U ej.2, - m~.~,+ 0 n ( X  - E D  forj---- -- 1, 1 

hence the sets M~,2~- Mj,2,+~-Pj,2,+ t are clopen in X -  E2 T for j = - 1, 1, 

and similarly also the sets Nj,2~- Nj,2~+!- Q/,2~+~ are clopen in X -  E2 ~. 

Similarly also the sets Mj,2; - Mj,2~ + t + Pj,2~ + ~ and Nj,2~ - Nj,2~ + t - Qj,2t + m, for 
j = 0, 2, are clopen in X -  E~. As easily seen, the closure o f  the union 

t,.J~ <,o (M2~ U P2~ - M2~ + t) of  closed sets is LJ~<,o (M2i t3 P2i -- g 2 i  + t) 13 {X } 
and hence also its images 
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U (M~,2i U Pj,2, -Mj,2,+,) U {f~(g)}, j -- - 1, 1, 2, 

and Ui<~o (Nj.2i U Pj.2i - Nj.2,+I) U {f~(y)}, j -- - 1, 0, 1, 2, are closed. For 

j = - 1, 1, I.J~<o,(Mj.2,- Mj,2~+,- Pj,2i+t) is open, being the union of  open 

sets. Since 

U (Mj.2, - Mj. , +, 
i<¢o 

--- U (Mj,2, U Pj,e, - Mj,2,-+,) U (f~(.i:)}) n (X - E ~  
i<to 

these sets are also closed in X - E2 r, hence they are clopen in X - E2 r. Similarly 

also the sets Ui <,o (N~,2~ - Nj,2~ +~ - Qj,2~ + i) are clopen in X - E2 r and therefore 

also the set Yof( . )  is clopen in X - E2 r. Similarly also the set Zof(**)  is clopen 

in X - E r. This establishes our claim that f r  is a homeomorphism of  X - E r 

onto X - E r. 

Now let us see that D r and Dr  are nowhere dense. By Definition 5(a), D s is 

nowhere dense. We proved above that E r is nowhere dense, thus its subset 

Ui<o, Pt U U~<o~ Q~ U {:~, J~} is a nowhere dense subset of  V. Therefore, also 

its image by f i t ,  Ui<o, P2t,i U Ui <to Qet u {f~t(x), f2t(y)} is a nowhere dense 

subset of  V2t. Since each of  the different V,'s has a positive distance from the 

union of  the other ones also Ut~z (Ui<,o P21,i U I,J~<,o Q2t,i u {f2t(~¢), f2t(y)} is 

nowhere dense. As easily seen from the definition of fr ,  for every m ÷ 0, 1 

{ f~(z i )  : i < to} =f~'g{z2, : i < to} U f ~  {Z2i+ I : i < to} ,  

and for m - 0, - I 

( f T ( z i ) : i  < t o }  = f~ ' {z i : i  < to}. 

Since, as can be easily seen, {z~ : i < to} is nowhere dense we have, as above, 
that the set Utez{f~.l+t(z~):i<to} is nowhere dense. Similarly, also 
{f~l(z_l):lEZ } is nowhere dense. Thus D r is nowhere dense, being the 
union of  finitely many nowhere dense sets. Similarly also D r is nowhere dense. 

(y) To see the effect of  applyingfr to D r and D r we shall see wheref r  differs 

from fs. By the definition o f f r  it coincides with fs outside 

M! UNI UM-I U N - I  __ Vl U V-l. 
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By our choice of  V, V n (D s U D s) = ~ ,  and since D s U D s is closed underfs  
also 

V ~ n ( D S u D S ) = ~  and V _ m n ( D S u D S ) = ~ ,  

hence 
(nf u D s) n (v, u v-t) = ,~. 

All the components of  D r and D~" given in their definitions, other than D s and 
D s, are included in some V~, for i ÷ l, - l, and hence disjoint from Vl U V_2, 

except for {fs(z-O}, ( f s - - l (Z- l )} ,  Pl,i, Qt,i, P - t  j ,  Q-l,i, {fs(.~),fs(.P)}, 
(fs-t (X), f~-l(y)}, {fr(z~) : i < to}, { f i l ( z i ) : i  < co}, and fs(z_t)E 1/1 -Mi,0 ,  
f ~ - l ( z_  l) E V_ ~ - M-~,0. Looking at the definition of  D~ r and D r we see now 

easily that fr(Dt r) = fs(D r) - - D g  and since, as easily seen, fs(E2 r -  E s) -- 
E r - E s, we get also f r (D  r - E r ) = D r - E r. 

(6) Let Obe a nonvoid open set, we have to prove that it has a nonvoid open 
subset Vas required by (6). Since S is an approximation, [7has a nonvoid open 
subset V* which satisfies (6) for S. Since, as we have seen, D r U D r is nowhere 
dense we can take V* N (D r U D r )  -- Z .  We shall now distinguish several 

cases. Case a: V* has a nonvoid open subset V such that f g  (f ') n v = ~ for 
every n EZ .  If  Case a does not hold then, for some n ~ Z ,  fg(V*)  tq V ÷ ~ .  

V = ( V - M o - P o - N o - Q o ) U  U P ; U  U a , u { . ~ } u { y }  
i < t o  i < t o  

(,) 
U U (M~-M,+t-P,+I)U U (N , -Ni+t -Qi+l )  

i < m  i < m  

Since fg(V*) A V is open and nonvoid and 

U e,u U Q,u{x}u{.~} 
i < t o  i < t o  

is nowhere dense, fg(V*) must have a nonvoid intersection with one of the 
other sets which make up (.), i.e., with one of  the open sets V - M 0 -  P 0 -  
N0-Q0 ,  M i - M i + l - P ~ + ~ ,  N - N i + I - Q ~ + ~ ,  where i < c o .  Let W b e  the 
nonvoid intersection of fg(V*)  with one of  these sets, deleting from it one of  
the zi's, for i E ( -  l} U to, if  this z~ is in it. W is obviously open. 
Let  f / = f ~ - ' ( W ) C _  V*. Since f s  -n is an autohomeomorphism of the open 
set [-J~z ~ ,  Vis open a n d f g ( P )  = W. We distinguish now also the following 
cases. Case b: f g  (V)  c_ V - Mo - Po - No - ~ or for some i < to, f g  (V) __c 
M2~_~ - M2~ - / 2 ,  - {z~_~} or f g ( ~  c_ N ~ - t  - N2~ - Q2~. Case c: For some 
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i <to, f~(V)C_M2i-M2~+t-P2~+t-{z2~}. Cased: For some i < c o ,  

fg(  _c -N2 +l - Q2 +l. 
Cases a, b: In these cases, by the definititya o f f r , f r  agrees withfs  on every 

set f~'(I7). Hence for all m U Z, fT' (17) = f~, (17), and (t~) follows easily from the 
fact that V* satisfies (t~) for S. 

Case c: In this casefg(l?)  _ M2i  - M 2 i + l  - -  P2~+~ - {z2~} and hence 

C m_n,2~ - -  m _ n , 2 i + l  - e - n , 2 i + t  - { f s - n ( z 2 i ) } .  

Thus for every m ~Z,  f~ ( fO c_ Mm-,,2~ C_ Vm-~ or f~ ( fO C_ Nm-~.2~ C_ Vm-, 
and hence lTsatisfies the first part of(J).  Powers offs preserve the property that 

a subset of  I'm is closed, for m E Z, and so do g and g -  ~ for subsets of  M and N, 
respectively. Since f7'(I7) _ M or f~'(17") __. N and powers o f f r  are compo- 
sitions of  powers o f f s  and g also powers o f f r  preserve the property of being 
closed for subsets offrk(l?), for k E Z .  

Case d: Similar to Case c. 

(e) I f x  ~ Um~z V~, then iff2~ +~(x) is defined thenf~"+~(x) is defined and 
then f2~ + l(x ) = f2~ + i (x). Since S is an approximation, f2~ + ! (x) = 

f2"+l(x) ÷ x. I f x ~  Vm for some m E Z ,  then clearly f2" + ~ (x)E Vm+2~+~, and 
since Vm+2n+l f'~ V m = ~ , ~ , f 2 n + l ( x )  q~ x .  

Having shown that T is an approximation, we have to show that it satisfies 
requirements (1)-(7) of Lemma 6. 

(1) The sequence (z~: i < to ) converges in D r N Uto  X E D r N U. For n ~ 0 

If]"g(zi) if i is even, 
1 
[ f s  2~ (zi) if i is odd. 

Since lim~_® z~ = ~ we have 

lim f2"(z,) = lim f2~g(z,) = f2,g(.~) = f2s~(.p) ' 
i ~  co, i is even i ~  ov 

lim f2~(z,) = lim f2~(z,) = f2"(X). 
i ~ , i i s o d d  i ~ o  

Since X E M ,  y E N  and M f~ N = JZ, • ~ and f 2 " ( x ) ~  fs2"(~), thus the 
sequence ( f~ (z i )  : i < to) does not converge. 

(2) and (3) follow immediately from the definition of  T. 

(4) I f x $  V_l O VI then f r (x)  = fs(x), hence d(fr(x), fs(x))  = 0. I f x E  V~, 
i = - 1, 1, then fr(x),  f s (x )~  V,.+~, and hence d(fr(x), fs(x)) <-_ diam(V~+t), 
d(fs(x), s > Et ) = d(V~ + t, ES). By (iv), at the beginning of  this proof, 
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diam(V~ + l) ffi< e-min(1, d(fs(x), ES)) 

hence d(fr(X), fs(x)) <ffi diam(V/+ 1) _-< e • rain(l, d(fs(x), ES). 
(5) This is similar to the proof of(4), using the inequality (iii) instead of(iv). 

(6) Let 1 _-< i _-< k. Iff~-(x) = f~  (x) then (6) holds trivially. This is always the 

case unless x E V_, or x E V-i+l in which case f~(x) ,  f~(x)  are in Vt where 

IE{0,  1}. 

d(f~(x) ,  x) > d(f/s(x), x) - d(fjs(x), f~-(x)) > d(f/s(x), x) - diam(V~), 

and by the inequality (v) at the beginning of the proof 

> d ( f ~ ( x ) , x ) - t  . man d(Vj, U Vm) 
- k  <J <-0 m~Z, m ~ j  

>-_ d(f~(x),  x) - e .d(V_i, Vt) 

>= d( fis(X), x) - e .d( f~s(X),X) ffi (1 - e)d( f~(x),  x). 

(7) Z_l~-D[ n U. 
This completes the proof of Lemma 6. 

PROOF OF LEMMA 4. Let { Un : n < co } be a basis of  the topology of  X. We 

define a sequence of  approximations ( T ( n ) ' n  < co) such that for every n, 

T(n + 1) is related to T(n) as T is related to S in Lemma 6, with U = Un, 
k = n and e = 2 -~n+2~. T(0) is defined by D r~°) = D~ c°~ -- E r~°) = E~ ~°) -- ~ ,  

fr¢o) = F. It is easily seen that T(0) is an approximation. Now we define 
Dt = U,,<~, D[ ¢~), Et = U,, <~o E r~) for I ffi 1, 2. Fo rx  ~E2 we setf(x) = limn_~ 

fr¢~)(x). This limit exists since, by Lemma 6(4), 

d(fr(,+l)(x), fr(,)(x)) < 2 -~ +2) 

hence the sequence (fr¢n)'n < co) is a uniformly convergent Cauchy se- 

quence, and it has a limit f .  Let us check now that conditions (1)-(5), (6) B and 

(7) of  Theorem I(B) are satisfied. 

(1) That E~ __ D~, E2 c_ D2 and D l n  D~ ffi ~ follows immediately from 

Definition 5(a) and from the fact that (D~rC~): n < co) and (D r~)" n < co) are 

ascending sequences (by Lemma 6(2)). By I.emma 6(1) D~ is dense in X, since 

every basic open set U~ contains points of  D r¢~) c_ Dl. Similarly, by Lemma 

6(7) also D2 is dense in X. 
(2) First let us prove that f m a p s  X - E 2 into X - El. Let x E X - E2, then 

f (x)  is defined, as we saw above. Assume f (x)  ~. El = Un <~o E rc~), then for some 
n < co , f(x) E E r~ .  d(fr~)(x), E r~)) > 0 since E r~n) is closed and f r~ (x )  ~ E rt~ 
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as fr(n) maps X - E2 r(n) onto X - E l  (n), and x ~ X  - E2 _=_ X - E2 r(~). We shall 
prove soon that for all m > n we have 

(.) d( frtm)(x), Er(n)) > ( 1 -  ~',-n 2-(i+2)) " d( frtn)(x), Er(n)). 

Therefore d(fr(m)(X), E r(n)) > ½d(fr(n)(x), Ertn)). Letting m --- oG we get 

d( f(x) ,  E r(")) >= ½d( fr(n)(x), E~ in)) > 0, 

contradicting j{x)  ~ . We prove now (,) by induction on m > n. For 
m = n, (,) is trivial. We assume now (,) for m and prove it for m + 1. By 
Lemma 6(4) 

d(A{~ + ,(x), ET (n~) >= d(A{~)(x), ET (nJ) - d(A(m + ,)(x), A(~)(x)) 

>= d( fr(m)(X), E rtn)) - ed( fT(m)(X), E~ tin)) 

>- d(f~(m)(X), E, ~(")) - ed(A(.)(x), E, ~(")) 

= (I -- e)d(fr(m)(X), E r(n)) 

and by (,) for m we have 

- - 2 • d(fr(n)(x), E f  (n)) 

We saw already that (fr(n) : n < to) is a uniformly convergent sequence of 
continuous functions, hence its limit f i s  also continuous. Similarly, by Lemma 
6(5) also the sequence (ffi~) : n < to) is a uniformly convergent sequence of  
continuous functions; let f be its limit, then D o r a ( f ) =  X -  Et and f is a 
continuous function. Exactly as we proved above for f we get that f maps 
X - El into X - E 2. Since the sequences (fr(n) : n < to ) and ( f ~ )  • n < to ) 
are uniformly convergent sequences of  continuous functions we have 

f f =  lim f ~ ] ) .  lim frtn)= lira f ~ ) f r ( , ) =  lira identity = identity, 
n ~ 0 0  n ~ o o  n ~ o o  i ~ o o  

and similarly f f =  identity, hence f - - f - ~  and f is a homeomorphism of  
X - -  E 2 o n t o  X - El. 

( 3 )  By Definition 3(7), eachfrtn) maps Di rtn) onto D r(n) and D rtn) - E r(n) onto 
Dr(n)-Er(n). By I_emma 6(2) and (3) the sequences (Drtn)'n < t o )  and 
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(D rt~ - E rt~) : n < to) are increasing and for each n,frt~ + 0 agrees withfrc~) on 

D r{~) O D n~). Therefore for each m > n,frtm) agrees withfr(,) on D rt~) O D rt~, 

hence also fagrees with frc~) on D rt~ U D rt~). T h u s f m a p s  D rt~) onto D rt~ and 

D rt~ - Ert ') onto D r(x) - El rtn). Our definition of D~, D2, El, E2 easily implies 

that F maps D~ onto D~ and/)2 - E2 onto D~ - E~. 
(4)  B y  (e)  r~k+~, ,x  JT(n) ~ !  ~ X whenever it is defined. Since the sequence 

(frt,~ : n < to) is a uniformly convergent sequence of  continuous functions, we 
have lim~_® r2k+~ = fZk+~. Thus we have to prove that lim,_~o Zk+~ fn~) (x) #: x J T ( n )  

whenever it is defined. By Lemma 6(6) we have, for m > 2k + 1, 

m - I  

d(f~m+}l(x), X) > H 
i -2k~-  I 

(1 9 -if+ 2)~1///" 2k+ 1 
- -  z .  ] t ~ , j  T ( 2 k  + I)(.X), X) 

o o  

> ]] (1 ,~ -(i+ = . _  _ - -  x )  
2)~dl f 2 k +  I 

i - 2 k +  I 

>_~ 2 k +  I ½d(f r~2k + o(X), X) 

> 0  

Thus we have shown that for every m >_- 2k + 1, d(f~-~m+)l(x), x) is greater than 

some fixed positive number, hence also the limit d ( f  2k+ l(x), x )  is at least that 
number and f2k + t(X ) ~ X. 

(6 3) Assume V ÷ O is an open set and V - (D~ O/)2) = A O B where A is 

meager and I B [ < 2 a°. D~ U D2 is meager by Definition 3(a). Therefore, by the 
Baire category theorem and since X is complete and has no isolated points, 
V - (D~ U D~ U A) c_ B included a perfect set, contradicting IB I < 2 ~°. 

(7) Given Ulet  n be such that U~ c_ U. By Lemma 6(1) there is a sequence 
(zi: i < t o )  of  points o f D  rt~) t3 U N Dom 2,, f r t , )  which converges to a point of  
D~ rt~) tq U~ _ D~ N U but where 2m . (frt~)(z~). i < t o )  does not converge. Since 

zi E D  rt') we have, by Definition 5(y), that allf~rt~)(z~), for j  < 2n and i < to, are 

in Dr  t~) O Dr  t~) C_ Di O D2. Since, as we saw above, f coincides with frt~) in 
Dr ~) O Dr t~) also f2m coincides with fr(n)2m on D~ rt") O D2 rt') and thus the 

sequence (f2m(z~) : i < to) does not converge. 

LEMMA 7. Assume that the assumptions of  Lemma 4 hold with assumption 
(1), that ( X, d) is a complete separable space without isolated points replaced by 
(1)', ( X, d) is a meager separable metric space without isolated points in which 
every non void open set is of  cardinality 2~0. 

Then there are f ,  D~, 1)2, El, E2 which satisfy the hypotheses of  Theorem 1 (A). 
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PROOF. The proof  is similar to that of  Lemma 4, and we shall only point 
out the differences. First we shall prove Lemma 8 which is a strengthening of  
Lemma 6. 

LEMMA 8. For every approximation S, e > 0, k > 0 and non void open sets 
U, R I , . . .  ,Rt, where each Rj, 1 < j  < l  is such that f~'(Ri) O f~(Rj) = ~ for 
m, n ~ Z, m ~ n, and a nowhere dense set C, there is a non void open set V c_ U 
and an approximation T such that: 

(1), (2), (4)-(7), as in Lemma 6. 
(3*) f r  agrees with fs and f ~ l agrees with f ~ l on D s O D s O C. 

(8) For all n ~Z ,  d(f~(V),  U,,ez, m , ' n  f~ (V) )  > O. 
(9) I f  C* C_ C, C* n (D s U D s) = ~ and C* is closed under fs and f ~ l then 

c*  n u D[)  = ra. 

(1 O) We say that a set R C_ X is confined by the transition from S to T i f  for all 
n ~Z ,  f~-(R) c_ fg(R).  The given sets R l , . . . ,  R~ and the set V are 
confined by the transition from S to T. 

PROOF OF LEMMA 8. The proof  is like the proof  of  I_emma 6, with the 
following changes. We choose the set V so that V, Vl, V2 and V_ l are disjoint 
from C and this takes care of  (3*). The set Vo f  the proof  of  Lemma 6 indeed 
satisfies (8). Since C n V -- ~ ,  C* c_ C and C* is closed under  fs a n d f s  --I , we 
have also C* n Vn = ~ for all n ~ Z. Therefore C* n (D r - D s) -- ~ for 
i = l,  2 and since C* n D s = ~ we have C* n D r --- ~ ,  and (9) holds. To 
satisfy (10) we add to requirements ( i ) -(v)  on V at the beginning o f  the proof  o f  
Lemma 6 the requirement: 

(vi) For each 1 _-<j _--< l either for some n ~ Z ,  V __ fg(Rj)  or else for every 
n E Z ,  V N f ~ ( R j ) = ~ .  

To make sure that Vsatisfies (vi), for every 1 < j  < l separately, we proceed as 
follows. I f  V O fg(Rj) = ~ for every n ~ Z  then V already satisfies (vi) for j ,  
otherwise for some n ~Z ,  V O f~(Rj) ~ ~ .  Since fs is a homeomorphism of  
the open set X - E2 onto the open set X - El it preserves open sets. Similarly 
also f~  -I preserves open sets. Thus f~(Rj) is an open set and we shrink Vto  
V n f~(Rj) getting V c_ f~(Rj). To see that (10) holds let us recall that f r  
coincides with fs outside V_ i U Vi and that, by the definition offr,  fr(V_ l) = 
V o - E  r and fr(V~)= V 2 - E  r, f~l coincides with fs - l  outside V0U V2, 

f r l ( V 2 )  = VI-Er2 a n d f i l ( V o ) =  V - l - E  r. Thus f~ (V)  c fg (V)  for every 
n ~ Z ,  1 < j  < 1 we have, by (vi), one of  the following two cases. I f  

V n fg(Rj) = 0 for every n E Z then alsof~ (V) = E are disjoint from the sets 
fg(R~), hence f r  and f i  ~ coincide with fs and fs -~ , respectively, in all sets 
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fS(Rj), hence f~.(Rj)ffi fg(Rj). The other case is that V C_ fg(Rj) for some 

n EZ .  Since f~(Rj), for m E Z ,  are pairwise disjoint, f r  coincides with fs 
outside V_l U V~,f~ ~ coincides w i th f~  -~ outside V0 u V2, fr(V,) c_ fs(V~) for 
i = - l , l  and f~(V~)C_f~-~(V~) for i ffi0,2, we have f~(Rj)c_f~(Rj) 
for m ~ Z .  

PROOF OF LEMMA 7 (continued). We define the sequence (T(n)  : n < to), 
of  approximations as in the proof  of  Lemma 4, with the following differences. 

For n < to, I ~ is the set Vof  Lemma 8 obtained in the passage from T(n) to 
T(n + 1). In this passage we take l = n - l and Rj = ff  for j < n. Since X is 
meager let X -- U ,  <0, C,, where for every n < to, Cn _ Cn + ~ and C, is a closed 
nowhere dense set. When we construct the open set V, in the passage from 
T(n) to T(n + l) we add the following step. By our hypothesis, since Vis open 
and nonvoid, [ V[ = 2~0. Since V = Uj<o~ V n Cj there is, by the Zermelo-  
K6nig inequality, a k < to such that I V n Ck I = 2 ~0. V n Ck C_ Ck is nowhere 
dense, and so is each set ffs(VN Ck) for j ~ Z .  Since, for every j E Z ,  
d(fJs(V), Un<z.,, ,j  f~(V)) > 0 also C, = Uj<o, f~(V o Ck) is nowhere dense. 
U,, n C~ D_ V n Ck hence [Un n C~[ = 2n0. We shrink V further so that 
V n C', - - ~ .  We take for C in the passage from T(n) to T(n + l) the set 

C~ U Co U . . .  U C,. Notice that C, is closed under fs a n d f ~  ~ and is disjoint 
f rom D s U D s (since Vis disjoint from D s U D s and D s O D2 s is closed underfs  
and fs-  l ). 

Let x E X - E2. For some m < to, x ~ Cm hence, by our choice of C and (3"), 
the sequence (fr(~)(x):n < to) is constant from n - - m  onwards and we can 
define f =  lira,_® fr(,), as in the proof  of  Lemma 4. (1)-(4), (7) of  Theorem 
l(A) hold as in the proof  of Lemma 4. To see that (5) holds let Um be a basic 
open set. We saw above that [ Um O Cm I -- 2~°, that C,, O (D r(m) U Dr (m)) = iZ 
and that Cm is closed underfr(m) and fArm). Thereft, re, by (9) of Lemma 8 also 
Cm N (Dr (') U Df (~)) -- O for all n > m hence Cm n (Di U/)2) = Z I. Thus 

I U m -  D~ U DE I = 2 ~°. To prove (6), given a nonvoid open set U, let m be such 
that Um __ U, then I'm C_ Um and by Lemma 8(8) for all i E Z, 

d(f~(m)(i'm), U fktm)(i'm)) > O. 
kEZ, k # i  

By our choice of  the R/s ,  for each stage in the construction of  the T(n) 's we 
have, by Lemma 8(10), that I'm is confined in each transition from T(n) to 
T(n + 1), thus for each i ~ Z ,  
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f~.(.,)(f',.) DO_ f~'(m + ,)(fzm) D f~.(,. +2)(12m) D . . . .  

Since f is the limit of the fT(.)'s in the strong sense stated above we have 
f~'{m)(f'm) ~- f~(12,,). Therefore also d(f~(l;'m), Ok zZ, k ,,* f k(f.m)) > 0. 

PROOF OF THE MAIN THEOREM - -  SECOND STAGE. If X is a nontrivial  

complete separable normed vector space over Q, then it clearly satisfies the 
conditions of Lemma 4, where we take for F any nontrivial translation and for 
g an appropriate translation. By Theorem I(B), this establishes part (g) of the 
Corollary to t i e  main theorem. In particular the consequences of Lemma 4 
hold for the case where Xis the real line ~. This is what was still needed in the 
first part of the proof of the Main Theorem to establish part (I) of the Main 

Theorem. 
].emma 7 and Theorem I(A) imply similarly part (2) of the Main Theorem. 

PROOF OF THE COROLLARY TO THE MAIN THEOREM. We have proved (4) 

directly, but it is also a particular case of (I). We shall establish (5) and (6) by 
showing that (5) implies (3), and (6) implies (I) or (3). 

THEOREM 9. Let X be a normed vector space over Q with a non void 
bounded clopen subset, then X has an autohomeomorphism of  order 2 without 

fixed points. 

PROOF. Let z EX,  z ÷ 0. Since X has a nonvoid bounded clopen set V 
we can assume, without loss of generality, that 0 E V and that V is of small 
enough diameter so that V N (V + z) = ~ .  Clearly U,~z+ nV = X, where Z + 
is the set of all positive integers. We define now for every n ~ Z  + a bounded 
clopen set C, and an automorphismf~ of C, of order 2 with no fixed points, so 
that C, + 1 - C, and f~ + 1 - f~. For n -- 0 we take Co -- ~ ,  f0 = ~ .  Given C~, 
since it is bounded there is an m E Z  + such that C~ c_ mV. We set C,+~ = 
m V  U ((mV - C~) + mz). Since V n (V + z) -- O also m V  N (mV + mz) = 
,~. We set 

A(x), x c. ,  

L+~(x) = ~ x  + mz, x E m V -  C~, 

I [ x - m z ,  x ~ ( m V - C , ) + m z ,  

then clearlyf~+~ is as required. Since U,ez* C, = Umez ÷ m V  = X, the 
jefunction f - -  U.ez+ f~ is an autohomeomorphism of  X of order 2 with no 
fixed points. 
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THEOREM 10. Let X be a normed vector space without any complete 
direction and let f b e  a nontrivial autohomeomorphism o f  X which is the identity 
outside a bounded set, then X has an autohomeomorphism o f  order 2 without 

f i red points. 

PROOF. Sincef is  nontrivial there is an x o ~ X s u c h  thatf(x0) # Xo. Without 
loss of  generality we have f (O)#  O, since otherwise we can replace f by f *  
given by f* (x )  = f (x  + xo) - x0, and f *  is clearly an au tohomeomorphism of  X 
which is the identity outside a bounded set and such that f*(O) ÷ O. We can 

also assume that II f(0) II = 1, since otherwise we can replace the norm II x II 
by the norm II x II * g iven  by II x II * -- II x II / II j ' (0) II w i t h o u t  changing the 
topology of  X. l e t  r be such that 

(1) for all x such that f (x)  ~ x, II x II, II x - f (o )  II < r. 

LEMMA 1 1. For every e > 0 there is a ~ > 0 such that for every real 
t , O < t < l ,  

(2) i f  II x II < 6/t then II f ( x )  -- f(O) II < e/t, 
(3) i f  II x - f ( 0 ) I I  < $ / t  then II f - ' (x )  l[ <e / t .  

PROOF. We shall prove only (2), since (3) follows from (2) by substituting 
in (2) x - f(0) for x and the function f - ~ ( x  + f(0)) - f(0), which satisfies the 
same hypotheses as f ,  for f .  

Let e > 0. Since f i s  continuous there is a J~ > 0 such that, for II x II < 61, 
II f ( x )  - f ( o )  II < 8. l e t  

3) 6 -- rain ~,~r ' > 0; 

we shall see that 6 satisfies (2). Let 0 < t N 1 and II x II < 6It. We shall 
distinguish the following three cases. 

Case 1. t <- el3rand II x II ---< r. By our choice of r ,  II f (0 )  II --< r, andsince 

II x II ---< r also II f (x)  II < r.  Therefore II f (x)  - f (0 )  II --< II f ( x )  II + 
U f (0 )  II ~ r + r = 2r. In the present case t ~ e/3r hence 2r < 3r --_< e/t,  thus 

II f ( x )  - f ( 0 )  II < e/t .  

Case 2. t <-_ el3r and II x II > r. Since II x II > r, f ( x )  -- x .  T h e r e f o r e  

U f ( x )  - f ( 0 )  II ~ II f (x)  11 + II f (0 )  II --< II x II + r < g/t + r. 

By the definition of  6, ~lt < el3t; by the hypotheses of  the present case t < e/3r 

and hence r <-_ el3t; therefore 
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II f ( x )  - f ( o )  II < 6/t + r <= e/3t + t /3t  < e/t. 

Case 3. t > e/3r. Therefore 1/t < 3r/e and thus 

II x II < 6/t < 6(3r/e) =< t~l, 

by the definition of  6. By the choice of  t~t, II f ( x )  - f (0 )  II < e -_< e/t (since 

0 < t  _-< 1). 

PROOF OF THEOREM 10 (continued). We define a sequence k, of  positive 

integers by induction as follows: k0 = 1; for n ~ 0, k, + ~ is such that k, + ~ > k, 

and for all 0 < t _-< 1 

(4)  if I[ x II <r/tk,+, then IIf(x)-f(o)II <r/tk,; 
(5) if  IIx - f ( 0 ) I I  <r/tk,+~ thela }l f -~(x) I I  <r/tkn.  

The existence of  k, + t follows from Lemma 11. 

We define, for n > 0, a, = (r + 1)/k,; dearly l im,_= a, = 0. 

Since no direction in Xis complete, there is a real 0 < q < I such that qf(0) is 

in the completion X c of  X but not in X. Let qn be an ascending sequence of  

rationals such that qo=O, lim,_® q , - - q  and q - q ,  < 1/2k4,+~. Let z, = 

q, f(O), then z0 -- 0 and z = l im,_= z, = qf(O) q~ X,  II z .  - z m II -- I q, - qm I, 

II z - z ,  II --  # - q , .  Let p, = q, +1 - q,, then 

(6) p, = q , + t - q ,  < q  - q ,  < 1/2k4,+1. 
We have now 

(7) a, + i > rp,, 

since 

Pn< 

and also 
(8)  a .  + ~ > r /k ,  + p .  

since 

Pn < 

1 1 1 r 1 
< - ~ - .  < -  an+l, 

2k4n+l k~+l r k,+l r 

1 1 r r 
< ~ a n +  1 ~ < a n + l  ~ - - .  

2k4, + i k. + I k, + l k .  

We shall construct a sequence g, ofautohomeomorphisms o f X o f o r d e r  2 such 

that 

(9) z, is the only fixed point of  g,, 

(10) i fn  > 0  and II x - z ,  II >-- a . ,  then g,+~(x) ffi g.(x), 

(11) for all m > n, if  [I x - z, II <r/km+3, then [I g , (x )  - z, [[ < r / k , .  

We shall first show that the theorem follows from the existence of  this 
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sequence. Let A. = { x E X :  11 x - z 11 > a. + q - q.}; A. is an open set and 
A .  C_ A .  + 1. We have 

xEA.-- l l x - z  II > - - _ a . + q - - q .  

( 1 2 )  ~ II x - z .  II ->-- II x - z II - II z - z .  II 

> a.  + q - q. - (q - q . )  = a .  

hence by (10) 
(13) x E A . = * g . ( x )  = g .+ l ( x ) .  

For every x E X  let n ( x ) = m i n { n : x E A . } ;  n ( x )  exists since 

lim._® (a. + q -  q . ) = 0  and z q ~ X .  Le t  G be the function on X given by 
G ( x )  =g.~x)(x). By (13) G coincides with g. on A., hence G is continuous 
on A . ,  and since X = (..J. <,o A . ,  G is continuous on X, and since the g . ' s  are of 
order 2 so is also G. Any fixed point of G has to be a fixed point of some g. 
hence, by (9), it has to be z. for some n, but, by (9), z. is not the fixed point 
of  any gm with m ~ n, hence G has no fixed points and is as required by the 
theorem. 

Now we define the sequence g.. go is defined by go(x) ffi - x .  go is clearly an 
au tohomeomorphism of  X of  order 2 and it satisfies (9) and (11). In order to 

define g.  + i from g. we define an autohomeomorphism h.  of X by 

h.  is an autohomeomorphism,  being a composit ion of  autohomeomorphisms.  
By definition of  the z . ' s  h . ( z . )  = z .+l .  We have 

(14) t l x - - z ,  tl ~rp.~h.(x)=x, 

since 

x - z .  f [ x  - z .~ x - z .  
I I x - z .  II >=rp.=.  - -  >=r=. ; • * h . ( x )  

P.  \ P . ]  P.  

X - -  Z n 

- -  + Z n  = X .  --  p .  

P.  

We shall now prove 

(15) ] I x - z . + l  II >rp.~h;~(x) =x. 

Let y = h~ i (x); it follows immediately from the definition of  h.  that 
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By our assumption that 

qn f(O) -- p~ f(O) we get 

X -- 7.hi Y=P.f-ix'-'-p'~ l+Z.. 

II x - z .  + ,  II >-- r p .  a n d  s i n c e  z .  + ,  - z .  - -  q .  + ,  f ( O )  - 

x - z .  f ( O )  = x - z . + t  - z .  = x - -  z n + t  > r .  

P. P~ P. P. 

By our choice of  r, II x - f ( 0 )  U >-- r =* f (x )  = x ,  hence also f - l ( x )  ffi x and we 

have 

( t - x - z .  X -- Zn X -- Z. and y = p . ~ + z . = x ,  
f -I  \ T ]  ---- P. P. 

thus h~- i (x) -- x, which is what we set out to show. 

We show also that 

r r 
(16) I I x - z .  II < ~ IIh~(x)-z=+, II < - - ,  

km + l km 

II h.(x) - z.+, II ffi II h . (x)  - h . ( z . )  II 

x _  z.  

By the hypotheses of  (16) 

X - - Z  n r 
~ , 

p.  Pnkm+l 

Substituting in (4) m,  (x  - z . ) / p ,  and p. for n, x and t we get 

X ~ Znl 
II h . ( x ) -  z.+l ll ~ P. f x - - ~  / -  f(O) < p . - -  

r r 

p.k~ km 

so (16) holds. Similarly, 

(17) 

Since 

r r 
II x - zn +, II < ~ I! h ; '  ( x )  - z .  II < - - -  

k . + ,  k .  

hn-- 1 ( x )  _ - pnf - I (X-- - -Z-~l+Zn 
\ Pn / 
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we have 

, , ' (x - z"l I - '  
\ P .  / \ P .  / 

Substituting in (5) m,  (x - z . ) / p ,  and p. for n, x and t, and recalling from the 

proof  of  (15) that 

x - z ,  f ( O )  = x - z ,  +___....~ 

P .  P ,  

we get 

,h:'(x)-z.,=p. I ' (  x-z"] < p .  
\ P / 

r r 

Pnkm k . ,  ' 

by (6). Therefore, by (11), 

(18) I I x - z . + ,  II >a.+,~ IIg.(x)-z. II >_- rt,.. 

Assume that the conclusion of  (18) does not hold, i.e., i f  y = g , (x)  then 

I l y - z .  II <rP.<=r/k4.. 

II g.(y) - z. U < r/k . .  

But since g .  is of  order 2, g . ( y )  = x ,  hence U x - z. II < r /k . ,  hence by (8) 

r 
I I x - z . + , l l - - - <  I I x - z .  II + I Iz.-z.+,l l  < ~ + p . < a . + , ,  

contradicting the hypotheses of  (18). 

To prove (10) for n + 1 assume [] x - z. + i I[ > a. + i. By (18) 

II g. (x )  - z.  II > rp . ,  

and by (14) 

h.g. (x)  = g.(x) .  

Also from [I x - z. + t U > a, + ,, (7) and (15) we get h.-- ~ (x) --- x, hence 

thus (17) holds. 

We define now g .+~--h .g .h~  ~. Since g.+~ is a conjugate of  g. in the 

autohomeomorphism group of  X, g. +j is also of  order 2 and its single fixed 

point is hn(z.) = Z.+l. Thus all we have to do in order to finish the proof  of 

Theorem 10 is to show that g. + ~ satisfies (10) and (11). We prove now 
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gn + ~(x ) = h,,g~hg- t ( x  ) = h~g~(x  ) = g n ( x  ), 

which establishes (10) for n + 1. 
To prove (11) for n + 1 assume 

II x - z~+~ II < r/km+3(n+l). 

By (17) 

II h; ' ( x ) -  zn II <r/km+3~n+l)-I. 

By (11) for n 

II gnh;~(x) - z~ II 
r r 

km+3(n+l)-l-3n kin+2 ' 

hence by (16) 

r r 
II h ~ g ~ h ~ ' ( x )  - Z~+l II < < - -  

k2,.+2_ i km+l 

i .e . ,  II gn + ~(x)  - zn+~ II < r/km ÷~. 
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